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Abstract

The expressions in Part I are used to treat the dynamics of electron transfer in the

donor acceptor system D*BA, via a molecular bridge B. Using a Fast Fourier

Transform method results are obtained for the maximum "population" of B - and for

other properties for this coherent but nonsuperexchange model. Several approximate

ideas on rate populations and energy distributions are tested using various values for
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I. Introduction

In Part I we explored the dynamics of electron transfer from some donor D* to an

acceptor A via a molecular bridge B, using one form of a coherent mechanism.' A

system was considered such that the relevant orbital of B was readily accessible

energetically, so that a superexchange mechanism was not involved, but such that B

and A were so strongly coupled electronically that a conventional (incoherent) two-

step electron transfer, D*-*B-, B--A involving a chemical intermediate B- was also

not appropriate. In the present article we describe some numerical applications of

the formalism outlined in Part I. Synthesis of suitable D*BA systems may permit the

observation of this type of mechanism.

In the formalism given in Part I, the nuclear motion accompanying the electron

transfer in D*BA was approximated with three collective vibrational coordinates,

there being three reactive centers, D*, B, and A. Using equal vibration frequencies to

simplify the problem and to extract some of the features, the three-coordinate

problem for the electronic-nuclear motion was reduced to a two-coordinate one by a

suitable rotation of the coordinate axes. A nonadiabatic mechanism was then used

for the initial loss of the electron from D*. The ensuing nuclear motion on the BA

potential energy surface was then separable into two one-coordinate motions. Some

numerical results based on this formalism are given in the present article to

illustrate some of the consequences of the mechanism, particularly for the transient

amount of B-.

We first consider numerically in Section II a simplified treatment, one which

contains only one collective coordinate instead of three and which serves to test

several features. In particular, results for the decay of D* are explored to see if they

are well-represented by a single exponential decay (Section III). The numerical rate

constant obtained there is also compared with that found from various Golden rule

and semiclassical estimates. In Section III results for this one-coordinate system are
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also given for the maximum population of B-(t), determined by projecting the

electronic wavefunction onto a basis set wavefunction describing the D*B-A

electronic configuration. The question of whether this B-(t) appears to follow,

roughly, the kinetics of a two-step electron transfer mechanism, D*BA-*D+B -

A-.D+BA-, with successive rate constants k, and k2, but with an abnormally high

apparent value for k2 , is explored in Section I1. In Section ITI. results for the three-

collective coordinate system are given, and correlations drawn between "B - m," for

various molecular parameters and an effective " elapsed time" in the D B-A

configuration.

I1. One-coordinate Test Calculation of Several Properties

(i) Formalism

As in Part I we introduce electronic wavefunctions to describe the three

electronic configurations D*BA (i=1), D 4 B-A (i=2) and D+BA- (i=3). In a

standard fashion the Schr6dinger equation is again converted then into a set of three

coupled equations for the nuclear wavefunctions 4 i in each electronic state, namely

eq. (2.4) of Part I. However, even at the outset there is now only one nuclear

coordinate z. Equation (2.4) of Part I can be written for this case in dimensionless

quantities as

- 1 3 H P i 4 i (2 .1)2 (0 I i
az=1 at

where the HQ represent various electronic matrix elements. As before, H1 3 = 0 and

H1 2 and H 23 are treated as constants. The diagonal quantities H,, represent diabatic

potential energy curves for the three electronic configurations. In the usual

vibrational harmonic approximation, they are
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/ 11 =  |Z

H22 = +(z-a)2 + AE 12 (2.2)

H 33 = + (z-b)2 + AE1 3

a and b being equilibrium nuclear displacements for the electronic configurations 2

and 3 relative to that for 1. When the a in eq. (2.2) is chosen so that a2 =a 1
2 + a22'

where the as's are defined in Part I, the present reorganizational parameter X12 for the

7 1--, 2 step, namely +a2, is the same as that (+a,2 + +a2
2) in the three-coordinate

problem. Similarly, when one sets b2 =a 1
2 + a3 

2, X is also the same in the one- and

three-coordinate cases. (However, the 23's differ.) The H,'s in (1.1) - (1.2) are, as in

Part I, the actual matrix elements divided by Aew, where cx/2 n is the vibrational

frequency.

In a real system, dissipation of the energy after (and during) the q 1- q 2--wq3
transition occurs by redistribution of that energy among the numerous degrees of

freedom. To avoid spurious oscillations of the wave packet in the simple model

described by eqs. (2.1) - (2.2), after the system has reached the z= b region, the H33 in

eq. (2.2) is used only for z<b, while for b!5zsL the (z-b)2 term is set here equal to its

value at z=b and an absorbing boundary is introduced at a boundary,2 z=L, L>b.

Equation (2.1) was then integrated numerically using a Fast Fourier Transform

routine.3, 4 The latter method is briefly summarized in Appendix A.

(ii) Calculation of Rate Constant kr and Various Approximations

From a semilog plot of the population in state T, vs. time, fj41(z, t)I2dz,

determined from this FFT solution, a rate constant was calculated. The decay was

typically essentially single-exponential, a plot being given in Fig. 1. (Conditions for

an alternative damped oscillatory behavior, as in Fig. 3, are given later.) These rate
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constants are compared later in Section III with values obtained from several

approximate expressions that are summarized in Appendix B.

In each of these latter approximations a Golden Rule expression5 was used.

Written here in terms of one coordinate, the rate constant kr for reaction from a

specific vibrational state m is

k= 2nI 2 -E (2.3)
trn'

where 4p.(z) is the vibrational wavefunction appropriate to H11(z), treated as a

harmonic oscillator potential, as in eq. (2.2), and the ,*'2 ) in one approximation

denotes a nuclear wavefunction appropriate to H 22(z). For comparison, in a different

approximation it denotes the eigenfunction (PA appropriate to the lower adiabatic

surface E_(z) arising from the (V2 , v3) pair (eq. (2.4) below). The corresponding

values of kr are denoted later in Tables I and II by kHo and kA, respectively. This kHo

is, thereby, the microcanonical version of the usually calculated Golden Rule rate

constant in the literature. In an added approximation in each case the final state

eigenfunction (p.'2) is replaced by its semiclassical stationary phase counterpart.

The resulting Franck-Condon matrix element (' (z)ld ,.2)(Z)) in eq. (2.3) is given by

eqs. (B4)-(B8), in both these diabatic and adiabatic choices for t, 2) , and the

corresponding kr's are denoted in Tables I and 1" by kHoac and kA80, respectively. The

adiabatic potential curve E(z) referred to above is given by

E(z) = j -(Z) + (z)]-{[H - (z)J2 +4H 2 } } (2.4)

When the initial vibrational state m is 0 in Tables I and II, the energy of the

initial vibrational state was close to AV 1 , the potential energy at the crossing point of

HI(z) and H22(z) potential energy curves (cf. ref. 6, eq. (2)),
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AV = (X12/4) (1 + AE/12/X ) (2.5)

For this case, namely for all m = 0 cases in Tables I and I, a uniform approximation

(Airy function), given by eq. (B7), was used for the semiclassical matrix element.

(iii) Effective rate constant k2 for the disappearance of B-(t)

Both for the one- and the three-coordinate calculations it is useful to know

whether the coherent dynamics for the "B-(t)", obtained numerically, can be fitted by

an apparent two-step kinetic equation, in which the effective rate constant k2 of the

second step is much larger than the theoretical adiabatic maximum for k2 in a two-

step (incoherent) process, namely (a/2n. A method of defining B-(t), by projecting the

time-dependent wavefunction onto the diabatic state 412 and integrating over the

nuclear coordinates, was used in Part I (eq. (4.8)). The corresponding equation for the

one-coordinate case is

B-t) f dzIJ(w(z, tA iw 4 f dZI1.0,(Z'tqI2  (2.6)

In order to interpret the results on k2 an estimate is needed for the region

approximately corresponding to 'B-" during the motion along the z-axis. As in Part I

we take it to be, roughly, the distance between the intersection of the H 1(z) and
H 22(z) curves, which occurs at z1 2 ' and the intersection of the H22(Z) and H 33(Z) curves,

which occurs at z23*. Using the arguments which led, in Part I, to eqs. (5.5) and (5.6)

there for z23
t ', and using an identical argument for z12t, but with AE 12 replacing AE, 3

and X12 replacing A23, we obtain

zt - z1 = (A +AE )(2X 1  
1-A 2  (2.7)
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Again, as in Part I, if the local velocity in this region is denoted by v., we have

vz = [2{E, - H22(z) + H22(z2°)I]* , or if the E_ (z) curve had been used instead of the H22 (z)

one, vz=[2{E,-E_(z)+E_(z 2°)}], both as in Part I, where E. is the initial energy. A

rough approximation to k 2 is given by

k2- "Izz- z~2J (when w,~1) , (2.8)

where O, is some mean z-velocity in the above z-interval, as in eq. (5.9) of Part I, and

w23 is the probability of a 2-3 transition when the system crosses the "intersection

region" at z = z 23
.

(iv) The rate constant kr for the three-coordinate calculations

The Golden Rule approximation was used for kr for the three-coordinate system.

The parameters were chosen to yield some fixed value of kr for an initial vibrational

state m = 0, so as to explore the effect of several other parameters when the rate

constant for formation of the population "B-(t)" was held fixed. The low temperature

standard form of the rate constant was used, since it corresponds to reaction from

m=0 (cf. ref. 6, eq. (71)):

k =2nIHL 2 e- X12 P r(p+) (0°K) (2.9)--- 12/

where p =- hE 12.

(v) The intermediate population "B -t)" for the three-coordinate calculation

The dynamics of the population B-(t) of the intermediate B- was computed for

two different potential energy surfaces for the (2, 3) pair of states. For the first of

these surfaces, calculations of B-(t) were made using the coupled diabatic states, the

analog of the present eq. (2.1), described in Part I and in the second, for comparison, a
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purely adiabatic (2, 3) surface E_(y z) there was used, the analog of the present eq.

(2.4). The time-dependent Schr6dinger equation was also described in Part I. The

numerical treatment was made for the one-coordinate numerical integration over the

z-motion (eq. (4.7) of Part I), which followed from an analytical separation of the x and

y motion there from that of z. Details of the numerical (FFT) method are given in

Appendix A.

The three-coordinate analog of eq. (2.7) for the region z 23 -z 1 2t occupied by "B-"

was obtained in Part I:

zt - z1 = [(AE + +(E 2 -) 12)((/A12)] /(2X2), (2.10)

and eq. (2.8) is used for k2 .

I1. Results

(i) One-coordinate kr's

The results for the FFT-calculated time-evolution of the population of the initial

electronic configuration 1 typically followed a first-order kinetics plot after a brief

transient period, as in Fig. 1, and so was describable by a first-order rate constant.

These one-coordinate calculations were made for Tables I and H" using values of the

parameters specified there in the footnotes.

The rate constants obtained from the numerical (FFT) solution for kr are denoted

in Tables I and I by k1 and are compared there with those obtained using the various

approximations described earlier in section II(ii) and in Appendix B. A comparison

with the semiclassical results is helpful in providing some insight on the dependence

of kr on the initial vibrational state and on the dependence of the quantum-calculated

populations B-(t) on various parameters.
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To represent the results of the many B -(t) vs. t curves it is useful to see whether

they are describable phenomenologically, for the range of parameters chosen, by an

apparent two-step sequence,' with rate constants k, and k2, where k2 is now an

effective rate constant, an adjustable parameter. This possibility was explored here

for a number of cases, Can example of such a fit being given in Fig. 2. The fitted k,_

there is 24 ps- 1 , which is eight times the maximum adiabatic value of (at hCoz = 100

cm-') 3 ps -1 . Other results for fitted k2's are given in Table D]I. Also given there are

the sizes of the region z2 3 -z12 , "occupied" by B-. It is easy to find molecular

parameters for which such a two-step phenomenology is inappropriate, for example,

when w23 is deliberately made very small,7 an example is being given in Fig. 3. Here,

the decay of D*(t) is strongly oscillatory, in contrast with the behavior in Fig. 2,

where the decay is largely monotonic. (The absence of a dissipative term in the D B-

A stage of the model permits the oscillations to occur.)

(ii) Three-coordinate kr , B- and (n')

The population of B-(t) was studied numerically here for the case where the k,

calculated from the Golden Rule eq. (2.9) for m=0 was 0.92 ps - '. The parameters

used are given in Table IM. A small value of X2 corresponds to a bridge with

negligible reorganization energy. Two sets of values for the ratio H 23 /H 2 are used,

namely 10 and 6. In each calculation the maximum of the intermediate population is

given in Table IV. This maximum B- population is denoted there by Bax,-, when all

matrix elements, H 22(z), H3 3(z) and H23 z) are used in the propagation (eq. (Al1) for

H) and by Bd,,, - when, for comparison, only Had is used (eq. (A12)). Plots of B ,

and ofB admax - for H2yH,2 =6 and 10 are given in Figs. 4-7.

Two plots of B-(t) vs. t are given in Figs. 8 and 9, with a fit (adjusting only k,) to

the two-step sequential formalism. Fig. 8 corresponds to the ninth row of Table [V

(H2 IH12 = 10) and the fit yields a k2 of 22 ps- '. Fig. 9 corresponds to the fourth row
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from the bottom (H2 1H12 = 10) and the fitted k2 is 12 ps-'. In a third result,

corresponding to the same row but with H23/H12 = 6, the fitted k2 was only 4.5 ps'.

This last value is seen to be smaller than the corresponding k2 at H. 3/H 2 = 10,

presumably because of some reflection of the wave packet at the crossing of the H9.2(z)

and H33(z) potential energy curves. All of these k2's are higher than the maximum

adiabatic value for k2 of 3 ps- I (at Aca = 100 cm- ').

In two of the above cases the distribution of the y-vibrational states in the wave

packet was analyzed. In the case of the ninth row in Table IV, with H2 3/H12 = 6, the

population distribution peaked at n' = 4, with an average value (n') of 3.9. In the case

of the fourth row from the bottom in Table IV, with H231H,2 = 10, the population

peaked between n' = 4 and 5, with an average value (n') of 4.8. The values of (n')

predicted from the classical expressions, eq. (5.1) of Part I, if the system after the 1-,2

transition moved on the H 22 surface, is 3.5 and 3.4, respectively, which are

substantially less than the observed (n')'s of 3.9 and 4.8, respectively. However, if the

system near (yO, z0
2) is better described as moving on the E_ surface rather than the

H2 2 as a result of the 1--*(2,3) transition, use of eq. (5.3) of Part I shows that the

additional energy shared among the (yz) motion is, in the above units, about 0.8 and

1.7, respectively. If, as in the diabatic case for the parameters chosen the large

proportion of the excess goes into EY, the predicted (n') could then be as large as 4.3

and 5.1. Thus, the diabatic (3.5 and 3.4) and adiabatic (4.3 and 5.1) values for n',

bracket, in each case, the observed (n')'s, 3.9 and 4.8, respectively. It seems clear that

the system after the 1-2 transition has, due to the (2,3) electronic coupling, sensed

the presence of the E_(z) adiabatic surface at z2°

IV. Discussion

(i) One-coordinate kr's
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From the results in Tables I and I there is seen to be reasonable agreement

between the one-coordinate numericaily-calculated (FFT) reaction rates and those

inferred from the various approximations. The use of adiabatic final state

wavefunction, leading to the adiabatic rate constants kA and their semiclassical

counterparts kA", is seen to lead to a slightly better agreement, on the average, with

the numerical values, kA, than does the harmonic-calculated rate constant k Ho (or

kHO-c), particularly for the smaller k,'s. Nevertheless, for our other purposes we have

used the kHO in the subsequent calculations for the three-coordinate system, since the

kHo expression, eq. (2.9), is particularly simple, and since kHo is rather close to k ,

particularly for m = 0, for the parameters chosen. Use of kA might also have entailed

consistency questions regarding the effective electronic matrix element to be used

instead of H 12 in the Golden Rule expression, eq. (2.3). Plots of kr(T) (not shown),

which tend to average over the differences in the various calculations for different

r's, were all very similar for the parameters examined.

Tile substantial decrease in the numerically-calculated k,'s on going from m = 0 to

m = 1 in Tables I and II, and the various oscillations of k, with m there, can be seen to

be due, in semiclassical terms, mainly to variations in the phase angle in the matrix

element for the overlap of the vibrational wavefunctions, for example in the sine term

in eq. (B4). When the results are canonically-averaged to yield a temperature-

dependent rate constant, there is an averaging over these oscillations and, in fact, the

results for kr(7T) were usually close to those which are obtained when the sin2 term for

each m a 1 term was replaced by an average value, 1/2.

Plots of kr(T) vs. the temperature T typically had a negative temperature

dependence when AV,, given by eq. (2.5), was smaller than the zero-point energy,

hw/2 (50 cm-' in the present case), i.e., whenever the AV1 in dimensionless units was

below 0.5. For all of the results in Table IV AV, is in the neighborhood of 0.2.
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(ii) Population of B-

(a) Maximum Value, B -,

It is useful to compare the results for the maximum population of B-, B-,n, given

in Table IV and Figs. 6 and 7, with those which would be calculated from an

incoherent mechanism, namely a mechanism in which the electron hops from D* to B

and then to A. If the rate constants for the D*-*B- and B--*A- are, as denoted

earlier, k1 and k2, the maximum population of B- by this mechanism during the

reaction, B , is given by' 2

k2

If we use the value 0.92 1012 s - for k,, and use the maximum adiabatic value ao/2n for

k , which for the given frequency, is 3 1012 S- 1 (100 cm-'), then B-,,n is estimated

from eq. (4.1) to be about 18%. Examination of the results for B-,. in Table IV and

Figs. 4 and 5 shows that they are appreciably less than this value, reflecting the

coherency of the overall D*-*A- electron transfer in the present model. Thus, if eq.

(4.1) were used to fit the observed B-,, an effective k2 much larger than this

maximum adiabatic value would occur for the present mechanism. Indeed, the

results in Table I illustrate this point, the effective k2 in the examples cited being a

factor of eight larger than the maximum adiabatic value.

Examihstion of the results in Table IV and Figs. 4-7 reveals a number of

additional features, particularly in the comparison of B n= - and Badm -. Differences

between the two reflect a reflection of the wavepacket at the (2, 3) intersection in the

B - case. The differences in Table IV and Figs. 5 and 7, for the parameters used,

are relatively small (columns Ba, - (c) and B - (c) and are larger at a somewhat

smaller H23 (columns Bad,, - (b) and B - b and Figs. 4 and 6). Further, there is seen
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in Fig. 4 to be a correlation between z23 - z12t and the value of B max for various

series of the k's. A correlation also exists in Fig. 5. The scatter in that figure at small

z2 3 -z 13t may be due to complexities in the overlapping of the two surface crossings

when H23 is large, but it was not explored. In plots of Badrna in Figs. 6 and 7, these

complexities are absent (only one surface crossing), and there is seen to be less

scatter.

It is useful to consider a few examples for the rough estimate of Badma- based on

eqs. (2.7), (2.8) and (4.1) and to compare the estimate with values in Table IV. Two

examples are given, both where the y-coordinate acquires most of the excess energy

- AE12 during the motion in H22 after the (1--*2,3) transition. In this case the systems

have an excess z-mode energy E. of about Awi/2 (0.5 in dimensionless units) in the

vicinity of z2
°. They have somewhat less than this amount in the vicinity of z12  and

somewhat more in the vicinity of z23 . The velocity vz in dimensionless units is 1

(since +vu2 = J). Averaging two results in Table IV of Bad," 0c) of 4.1% and 4 3% for

the case where z 2 equals 0.48 and 0.68, in dimensionless units, respec, ively,

we see that k2 (= l/ 2 ) is about 1.8 in dimensionless units. Conversion to ps by

multiplying by ca yields 34 ps - ' for k . Equation (4.1) then yields 2.3% for Bad,. , -,

compared with the actual value of 4.2%. Similarly, when B ad,ma- is averaged ov: r

the last five values in Table IV, it is about 6.3%, z23 * - z, 2 $ is about 0.8, and so k 2 =

1/0.8, i.e. 1.25 in dimensionless units. This value corresponds to a k2 of 24 ps-1 and

thereby to a B- d,m of 3.4% according to eq. (4.1), again roughly a factor of two

smaller than the observed value of 6.3%. These values of k2 may be compared with

those of about 25 ps -1 estimated by fitting the data of one-coordinate calculations

(Table i) to a two-step type kinetic expression.

As a footnote we consider the question of an elementary step in the bacterial

photosynthetic reaction center. In this case it has been suggested8 in the

interpretation of some low temperature data on both Rps viridis and Rb. sphaeroLdes
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that an electron transfer from an electronically-excited bacteriochlorophyll dimer

BChl 2 to a pheophytin BPh via a chlorophyll monomer BChl, the estimated

maximum population of BChl- could not exceed 2%. The value for the initial rate

constant kl for forming BChl- was close to that employed in this paper. Examination

of the BM. - in Figs. 4 and 5 shows no results close to this value. (Results with

X2 = 0.1 are intended only to simulate a rigid bridge. For BChl a substantially larger

X2 is expected.) However, perhaps the 2% estimate in ref. 8 is only at rough one.

Recently, new and dramatic results9 have been obtained for Rb. sphaeroides at room

temperature, showing a substantial value for B - and with k2/k1 = 4. In the latter

work an improved signal to noise ratio and improved time-resolution was used,

together with observations of the polarization of the absorption. Studies in that

laboratory at low temperatures are planned to compare with those obtained8 earlier.

At present, it should be added, none of these results, old and new, is universally

accepted, and further published works will be needed before the issue of mechanism is

settled.
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Appendix A. The Fast Fourier Transform Method

In the calculations made in this paper, a one-dimensional vibrational wave

function was propagated using a Fast Fourier Transform (FFT) method.3b For

completeness it is reviewed briefly here. In the method an operator exp (- itH.) is

written in the form

exp(-itH)=[exp(-itlIz/M)] M  [U(t/M)JM (A 1)

where a short-time propagator U(t/M) is introduced, defined in eq. (A2), and where

the number M is taken large enough so as to make the error term in (A2) small. We

have for U(c),

U() = exp(-it-/ /2)exp(-i-K ) exp(i-H/ 12)+ 0( 3) , (A2)

- denoting tM. Here, K denotes the nuclear kinetic energy operator, ( = -a 2/8z 2 in

the z-representation). In the remainder of this Appendix we give the method for the

three-coordinate case, where the evolution is discussed on the (2, 3) surfaces. For the

one-coordinate case, the evolution was treated on the (1, 2, 3) surfaces, and the sums

in (A3)-(A8) are then over i = 1, 2, 3.

H L is the electronic Hamiltonian for motion on the (2, 3) pair of curves:

3 3
ff, I .)(TuIH'1 jp j)(Tpj 1= I Iad(a.IHIa,)(aIj (A 3)

i4=2 i=2

where Ii ) is the ith diabatic electronic state and Jai ) refers to the ith adiabatic

electronic state (cf eq. (A12) below for la2)).

We define Izm ) as the eigenstate of the nuclear position operator z defined on a grid

{znjm=I and write the total z-wave function, a function of z and t, as
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N 3
lqj(z~t)-- I I' Iz dIty,)t,(Z,,t) (A4)

,n=1 i=2

where N is the number of grid points, the sum over i is over the diabatic electronic

states 2 and 3, and (P,(z, t) is the value of the nuclear wave function at (zm, t) for the

ith electronic state. The total wave function at time t+t is given by Ij(z,

t+T))=U(T)Iw(z, t)). The long-time propagation is then achieved by successive

applications of the short-time propagator (A2).

In order to calculate the U(r) in eq. (A2), the exp (- VtHe/2) in eq. (A2) is computed

in a representation in which He is diagonalized with respect to the nuclear and

electronic states. In particular, an adiabatic description is used for the electronic

states and a coordinate description for the nuclear motion:

3 N

He 1= j Y I ,ljaIzm)Hii(Z, l(aI (A5)
t=2 m=1

For diagonalization of exp (- itK), a representation in which K is diagonal is used,

namely a diabatic description of the electronic states and a momentum

representation for the nuclear motion:

3 
(A6

K ,l >zS~ =<, I(A6)z.*P(~jqj

i=2 m=1

We next introduce momentum eigenvectors for the nuclear motion Ik,), there being

the set of points {kN = on a reciprocal space grid.3b Using the completeness

N N

E Ik,,)(kj= 1 and E Iz,)(z.I= 1 we have
n=1 M=-

-16-



3 N N N k2
K .Y (zIk),-2(k,,Iz ) (z( .I (A7)

2z 1 n ' n m i mi1 r
i=2 1=1 m=1 n=l

Here (z, I k,,) and ( k,,z, ) denote plane waves. Therefore, expressions of the
N

form (knizj)ftz) represent a Fourier Transform ofqfz), which will be denoted
J=1

asFit].

By using Eqs. (A2) to (A7) we obtain

3 3

- (ZM P t +  Y)= I T j exp(-i/./2)Tt F - {exp(-i -T 2/ 2)
j=2 p=2

3 3
F E [T exp (- i ,./2) Tt (8

r=2 k=2

Here, the matrix element, T, denotes (qi aj).

To implement the method, the reaction coordinate z is first discretized, using a

grid of N points and length L, with Az (=L/N) being smaller than the length scale

over which the nuclear wavefunctions 4 k change significantly. At each point of the

grid the initial wave functions 4 , are transformed into adiabatic wave functions

Trk(Pk, then operated on with the diagonal operator exp(-iAeItI2), diagonal in this

representation, and then transformed back into the diabatic representation, as in eq.

(AS). This step couples the diabatic electronic states. Next, each diabatic component

pp is Fourier-transformed into the k-momentum representation, operated on by

exp(iKt) and changed back into the z-coordinate representation using an inverse

Fourier transform (cf. eq. (A8)). These operations couple the amplitudes {(P(z )} at

different points in the grid. To perform the Fourier transforms involved at this stage,

an efficient fast Fourier transform algorithm was used.4
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The times involved in the computation were long enough to allow the wave

function p to reach the edge of the grid. When this happens the piece of the wave

function reaching the edge of the grid would normally reappear at the left hand side,

since the fast Fourier transform method uses periodic boundary conditions. Such a

reappearance, if allowed to occur, would distort the calculated values of the rate

constant. To avoid this spurious consequence an absorbing boundary condition was,

in effect, used, namely by using a complex-valued potential which removes the

wavefunction before it reached the grid edge,' namely

H~a) = H .- i Vsz)(A9)
JJ JJ

where H. are the diagonal elements of the potential matrix HL and Vab, (z) causes the
ii

absorption.

Vab(z)=exp[y(z-zL)] (A 10)

Here, zL is a point close to the right hand edge of the grid and y is a parameter that

controls how rapidly qpj will decay to zero near that zone. The imaginary part of the

potential namely , -iV b,(z), was chosen such that it tended to zero everywhere

except near the edge of the grid.

We give below some further details on the calculations mentioned in the text:

When a purely adiabatic description is used for motion on the (2, 3) pair of

surfaces, to compare with the previous calculations based on the H in eq. (4.4) of Part

I,

33 a2
H,= eI, I - 1 jH..(z))(wI (A11)

i=2 j=2

an adiabatic expression H ad was used instead of this H,

-18-



H a2 ) M la 2. +E (z) (a21 , (adiabatic) (A 12)

where Ia2) is the adiabatic electronic state function for the lowest electronic adiabatic

eigenvalue Ejz). In this second instance the z-adiabatic electronic-vibrational state

function, (P2 ad(Z, t) la2 ), where 4 2 ad(z, t) is the nuclear part and Ia2 ) the electronic part,

is next transformed into its diabatic components3 b The z-nuclear wavefunction p2(z,

t) for electronic state 2, is then given by

3

(2 (z,t) = T 2j(z)t (z, t) = T2(z) 4 '(z,t, (A13)
j=2

since only one adiabatic electronic state Ia2 ) is considered. Here, Tv is an element of

the matrix T mentioned above, which transforms from the adiabatic to the diabatic

representation, T (z) = (qr,' afz)); I'v,) and Iafz)) are the ith electronic diabatic and

thejth adiabatic electronic state at the cited value of z, respectively (i = 2, 3; j = 2, 3).

The Iafz)) and hence the Tij(z), depend parametrically on z. The transformation

matrix T satisfies the relation A. = T t H T, where H is a matrix with elements given

by the H,(z) terms in eq. (All) and A, is the diagonal matrix whose elements are the

adiabatic eigenvalues E (z) and E_(). The columns of the T are the eigenvectors of

this H.
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Appendix B. Approximations used for kr

(i) Airy function calculation for 4Pm.(z)

The pair of potentials H 22(z), H33 (z) in eq. (2.4), given by eq. (2.2) with the

modification noted in Section I(i) for x > b, and with a coupling element H23 , are used

to calculate E(z) and, thereby, the 4A(Z)'S. The reactant's vibrational wave function

(pm(z) for electronic state 1 is a normalized bound state wavefunction, while the

wavefunction P,,, given by the 'A, is normalized to a Dirac delta function in energy

differences,' 0 the latter in units of Aca.

This approximation for 4 a employs a uniform semiclassical function based on

an Airy function, which when normalized to a Dirac delta function is given by"

dA(z) =2k[R(z)I*k(z)-*Ai(- (z)) , (B 1)

where

k 2(z)=2(E-E_) ), &( k(z)dz) (B 2)

E-E_ being in units of Aca, E_(z) is given by eq. (2.4), modified for z2!b as noted

earlier, and

A I-E CO exp ( is )K s ,(B 3)2a f® i 3

The zo in eq. (B1) is the classical turning point for nuclear motion on the curve E (z)

at the energy E.

(ii) Harmonic ,,.(z) calculation

This calculation of kr is the standard one, and involves choosing pm.(Z) to be a

vibrational eigenstate of the harmonic oscillator Hamiltonian eq. (3.7) of Part I with

H22(z) given by the present eq. (2.2). The resulting kr in Tables I and II is denoted by
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kH.o. For a one-dimensional problem the density of harmonic oscillator vibrational

states in electronic state w2 is (hA))-t, and so the sum over the final vibrational states

approaches (ha)- (and hence unity in the present dimensionless quantities) times

the value of the overlap integral squared, interpolated from the discrete states d ,. to

an energy where Em.=En' Each of the functions dpm and , is now a (normalized)

harmonic oscillator wavefunction because of the harmonic potentials H,,(z) and

H 22(z) used in eq. (2.2).

(iii) Semiclassical Results

A stationary phase semiclassical approximation to two of the above solutions -

the adiabatic one in section (i) and the harmonic-harmonic in section (ii) is readily

obtained: WKB solutions are introduced for the wavefunctions appearing in the

integral (4cm.), in eq. (2.3), which is then given by:"

(4 €.)= F(zc) sin [8(zc)+2j (B4)

where

O(z)= k,(r)dr - k (r)dr (85)
Z1 'rPt

and

F(zC) nk(z) j8"(z) I  - ik () s-S .

where the fact that k(zi) = k,'(zc) was used, and where si -s. denotes the difference

in slopes of the potential energy curves H, 1(z) and either H 22(z) (for kr = kosc) or E (z)

(for kr=kA'c) at the crossing point z=z,. Normally, the constant F(z,) would differ by

a factor of(Aw)*, depending on whether a wavefunction (p. was normalized to a delta

function of the energy or whether as in a bound state, to a delta function of the

-21-



quantum numbers.10 In the present case, however, where we have employed

dimensionless energies, the two normalizations are identical.' 2

In eq. (B5) km is [2(E-H,,(z))]4 and k. is [2(E-H 2 (z))]* or [2(E-E-)]*, according

as H 22 (z) or E is the potential used. z, is the crossing point between the curves H,1(z)

and H 22(z) [or E(zl and z1 , z,. are the left hand classical turning points for nuclear

motion in the potential energy curves H,,(z) and H2 2(z) [or E(z)], respectively.

When the system was in the m = 0 state, the energy of that initial vibrational

state was typically somewhat close to the potential energy at the crossing point xC.

For each such calculation in the semiclasssical case, a uniform approximation version

of eq. (B4) was used, namely13

4mlltj )- (F(zdjln)*4*rAi( - 0) (B7)

where F(z,) is given by (B6) and where ( is positive and equals (3/2IO(z0)Al.
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Legend to Figures

Fig. 1 Typical semilog plot of logarithm of survival probability D*(t) vs. t for the one-

coordinate calculation. AE12 = - 1.5, AE13 = - 15, m = 0, and remaining

parameters are given in Footnote a of Table I; a and b in eq. (2.2) are both

positive.

Fig. 2 Fit of B-(t) in the 1-D calculation to an effective two-step incoherent

formalism, using only k2 =24 ps-1 as a single empirical parameter. For these

results we have AE 12 =-2.5, AE 13 = -15, m=0 and the remaining

parameters are given in Footnote a of Table I; a and b in eq. (3.2) are both

positive.

Fig. 3 Example of the time-evolution of D*(t) in a 1-D calculation for the case when

w23 is made quite small (see text), by having the 2-3 transition in the inverted

region (-AE3 > AL2 3 ), and with a large value of H 23 . In the case depicted,

- AE 23= 19.5, A23 = 3.08, - AE12= 1.5, and X2 = 3.58.

Fig. 4 Plot of Bm - vs. z2 3 t-z 1I 2 , given by (2.7), for H 2 /H 12 =6, and several families

ofX's used in Table IV: CQ, ,-AX(withinafactorof2); e, X2=0.1; X, X-.\1A-1,5

to 1/6. Data taken from Table IV.

Fig. 5 Plot of B S-'vs. Z2 3 -z 12 , given by (2.7), for H 2 /H12 = 10, (data in Table IV).

Fig. 6 Plot ofBad, - vs. z 2 3 -z 12 , given by (2.7), for H2 IH 2 = 6, (data in Table ['V.

Fig. 7 Plot of Bad,,- vs. z 23tz 1 2 
t , given by (2.7), for H 2 /11 2 = 10, (data in Table R').

Fig. 8 Fit of B-(t) in the 3-D calculation to an effective two-step incoherent

formalism, using only a k2 = 22 ps- 1 as a single empirical prameter. These

results correspond to the ninth row of Table IV, in the column ofB -'

Fig. 9 Fit of B-(t) in the 3-D calculation to an effective two-step coherent formalism,

using only a k = 12 ps - I as a single empirical parameter. These results

correspond to the fourth row from the bottom in Table IV, in the column of
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Table I. First-order rate constants (ps- 1) for various initial vibrational states m
(1-coordinate calculation).a

M E12 kl b kAc kASc d kH0 e kHOsc d

0 -0.5 1.99 2.17 2.20 2.09 2.08

1 0.0063 0.011 0.011 0.022 0.026

2 0.55 0.56 0.57 0.84 0.87

3 0.80 0.91 0.91 1.04 1.06

4 0.78 0.83 0.82 0.73 0.71

0 -1.5 1.52 1.62 1.64 1.56 1.56

1 0.0094 0.0091 0.0089 0.062 0.064

2 0.61 0.67 0.70 0.83 0.85

3 0.59 0.63 0.62 0.52 0.51

4 0.092 0.095 0.090 0.15 0.14

0 -2.5 1.11 1.21 1.22 1.15 1.14

1 0.10 0.11 0.11 0.22 0.22

2 0.61 0.71 0.72 0.73 0.73

3 0.14 0.15 0.19 0.11 0.10

4 0.069 0.053 0.050 0.12 0.13

0 -3.5 0.92 1.07 1.06 1.01 0.99

1 0.12 0.13 0.13 0.23 0.23

2 0.54 0.63 0.64 0.62 0.62

3 0.067 0.087 0.085 0.032 0.029

4 0.16 0.13 0.14 0.22 0.23

a For a -AE,2 of 0.5, 1.5, 2.5 and 3.5, in dimensionless units, the values of X2 were (to three figures) 1 62,2.82,
4.30, and 5.52, respectively, X,3 was (to three figures) 21.9, 21.4, 21.0 and 20.9, respectively, and - AE 3 = 15,
H12 = 0. 25, H2 = 2.5. The heigt A Vi of the crossing point of HI and H was between 0.15 and 0 2. namely (as
calculated from eq. (2.5)) 0.194, 0.155, 0.188 and 0.165, respectively. Ateaand bin eq. (2.2) were chosen to be
of the same sign.

b Calculated using the FFT method.

c Calculated using only the cited m term in eq. (2.3) and using eq. (BI) for the 4),.(z) in eq. (2.3) and integrating
in ((PmIo.) numerically to obtain thiz matrix element.

d Calculated semiclassically using only the cited m term in eq. (2.3) and using eqs. (B4)-(B6). For r= 0 eq. (B7
was always used.

e Calculated from eq. (3.13) of Part I.



Table II. First-order rate constants (ps- 1) for various initial vibrational states m

(1-coordinate calculation).a

rn AE 12  A v i  k Ib kAc kAsc d kHOe kHOSC d

0 0 0.76 0.44 0.54 0.52 0.44 0.41

1 1.32 1.35 1.33 1.47 1.56
2 0.21 0.16 0.17 0.080 0.081
3 R 0.14 0.13 0.23 0.24

4 0.89 0.68 0.67 0.69 0.69

0 -0.5 0.54 0.76 0.78 0.77 0.70 0.67

1 0.80 0.93 0.94 1.09 1.12

2 0.50 0.55 0.57 0.46 0.47

3 0.0091 0.0097 0.0089 0.00014 0.00042

4 0.39 0.45 0.45 0.54 0.54

0 -1.5 0.20 1.23 1.46 1.45 1.42 1.40

1 0.094 0.095 0.093 0.16 0.16

2 0.82 0.83 0.83 0.87 0.88

3 0.33 0.39 0.59 0.35 0.53

4 0.053 0.064 0.061 0.031 0.028

0 -2.5 0.025 1.42 1.74 1.86 1.72 1.89

1 0.17 0.16 0.15 0.11 0.11

2 0.09 0.11 0.12 0.30 0.31

3 0.61 0.61 0.63 0.71 0.72

4 0.28 0.59 0.59 0.41 0.40
a Wehaveset-AE3 =15, 2 3.03 (to three figures), X 2=21, H2 =0.25, H, =1.75andAw=lOOcm ' Thea

and b in eq. (2.2) were chosen to be of the same sign.

b Calculated using the FFT method. The R in the fourth entry of this column denotes a resonance- like behavior.

c, d, e See corresponding footnotes in Table I.



Table III. k2's fitted to B-t) Curves, One-Coordinate Calculations a

kl ks
m AE12  i k2 1 23 t_12(ps-) (ps-) -z

0 -0.5 1.99 29 0.41

0 -1.5 1.23 28 0.67

0 -2.5 1.42 24 0.57

0 -3.5 0.92 25 0.63

a The molecular parameters (Ws, etc.) are given in Footnote a of Table I.



Table IV. Maximum Population P2 for Several Potential Energy Surfaces. a

--AR 12  -A-E3 X1 A2 XA B ad,max (b) B az - (b) B adma-C) B - (c)
13(%)2 (%) (x 0.1) (%) (%)

3.5 21 2.85 2.9 18.15 1.5 6.9 -2.0 1.3 6.0

2.5 21 2.4 2.4 18.6 1.4 5.8 -2.0 1.3 3.5

1.5 21 1.9 1.9 19.1 1.4 5.1 -2.0 1.3 3.0

3.5 19 5.65 0.1 15.35 1.6 4.8 -0.4 1.5 5.4

1.5 19 3.7 0.1 17.3 1.8 4.4 -0.4 1.8 4.1

2.5 21 2.4 2.4 20 2.4 6.5 0.4 2.2 3.7

1.5 21 1.9 1.9 21 2.6 5.9 1.1 2.5 2.95

3.5 21 2.85 2.9 21 3.1 7.6 1.1 2.4 3.8

3.5 17 5.65 0.1 15.35 2.9 6.4 3.2 2.5 3.4

1.5 17 3.7 0.1 17.3 3.1 5.85 3.0 3.0 3.45

1.5 15 3.7 0.1 15.3 3.4 6.1 3.2 3.2 3.4

1.5 15 3.7 0.1 16.3 4.2 6.3 4.8 4.1 4.0

3.5 15 5.65 0.1 15.35 5.0 7.05 6.8 4.3 4.6

2.5 15 4.7 0.1 16.3 5.0 7.15 6.5 4.6 4.8

1.5 15 3.7 0.1 17.3 5.1 7.2 6.4 4.8 4.95

2.5 15 4.0 0.8 17 5.85 9.9 6.8 5.3 5.4

3.5 15 5.0 0.75 16 6.0 9.4 7.1 5.3 5.6

2.5 15 3.5 1.3 17.5 7.9 14.4 7.1 5.6 5.9

2.5 15 4.0 1.75 17 9.0 15.0 7.3 6.2 6.6

3.5 15 3.0 1.8 18 9.6 16.4 7.2 6.05 6.6

3.5 13 5.65 0.1 15.35 7.8 12.2 10.4 6.5 6.6

1.5 13 3.7 0.1 17.3 8.1 13.7 9.8 7.1 7.3

a When AE12 =-1.5 and AE12= -3.5ak =0.92 ps' was used, while when AE1 2 -2.5ps 'ak,=0 93 ps_ was
employed.

b H/H = 6

c H2/H 2 = 10
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